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Abstract Traditional quantum mechanics (QM) predicts probabilities of different events.
If we describe an elementary particle, then, experimentally, these probabilities mean that if
we repeat the same measurement procedure with multiple particles in the same state, the
resulting sequence of measurement results will be random w.r.t. the corresponding prob-
ability measure. In quantum cosmology, QM is used to describe the world as a whole; we
have only one copy of the world, so multiple measurements are impossible. How to interpret
these probabilities?

In this paper, we use the approach of the algorithmic information theory to come up with
a reasonable interpretation. This interpretation is in good accordance with the arguments
presented by several physicists (such as D. Finkelstein) that a wave function is not always a
physically reasonable description of a quantum state.

1 Standard Quantum Description: Brief Reminder

Intended Audience and a Need for Reminders The main objective of this paper is to ap-
ply the notions of algorithmic information theory and Kolmogorov randomness to quantum
physics. We therefore expect this paper to be of some interest both

• to specialists in Kolmogorov randomness who are interested in possible applications, and
• to specialists in quantum physics who may be interested in physical consequences.

We realize that few people are well familiar with both research areas of quantum physics
and Kolmogorov randomness. So, to make this paper more readable to both audiences, we
need to include brief introductions to both areas.

Readers who are well familiar with quantum physics can skip the physical introduction
(which follows right after this comment), and readers who are familiar with the algorithmic
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information theory can skip the introduction to Kolmogorov-Martin-Löf randomness (which
follows later).

Classical (Pre-Quantum) Description In the traditional classical (pre-quantum) descrip-
tion of particles, the state of each elementary particle can be characterized by its location
x ∈ R3 in the 3-D space R3, by its momentum p = m · v (where m denotes the particle’s
mass and v its velocity), etc.

Similarly, the state of an N -particle system is characterized by describing the coordinates
x1, . . . , xN and momenta p1, . . . , pN of all the particles.

Quantum Description is Probabilistic In quantum physics (see, e.g., [3, 30]), a particle
does not have a certain location x or a certain momentum p: if we measure location of
several particles prepared in the same state, we get different locations with different proba-
bilities. Similarly, we get different values of the momentum with different probabilities.

In contrast to the classical (pre-quantum) case, a state of a quantum particle does not
enable us to determine the exact location or the exact momentum; instead, a quantum state
uniquely determine the probabilities of different locations and/or different momenta.

Case of a Single Particle In the traditional quantum mechanics, a state is described by a
complex-valued function ψ called a wave function.

For example, a state of a single particle is described by a complex-valued function ψ(x)

defined on the 3-D space (x ∈ R3). Under this description, for every set S, the probability
to find this particle in an area S ⊆ R3 is equal to the integral

∫
S
|ψ(x)|2 dx, where |ψ(x)|

denotes the absolute value (magnitude) of the complex number ψ(x). In other words, the
function |ψ(x)|2 is the probability density function of the probability function which de-
scribes the particle’s location.

The total probability to get any value x ∈ R3 should be equal to 1, so we must have∫
R3 |ψ(x)|2 dx = 1.

The probability to find the moment p within a certain area S is similarly equal to∫
S
|F(ψ)(ω)|2 dω, where F(ψ) denotes the Fourier transform of the wave function ψ(x).

Linear Structure on the Set of Wave Functions One of the fundamental notions of quantum
physics is the notion of superposition. In terms of wave functions, superposition of n states

ψ1(x), . . . ,ψn(x) simply means a linear combination ψ(x)
def= c1 · ψ1(x) + · · · + cn · ψn(x)

of the corresponding wave functions ψi(x), for appropriate (complex-valued) constants ci .

Bilinear Product on the Set of All Quantum States From the purely mathematical view-
point, we can consider arbitrary linear combinations. However, for such composition, the
integral

∫
R3 |ψ(x)|2 dx may be different from 1. For example, if we multiply a wave func-

tion ψ(x) by a constant c > 1, then for the new function ψ ′(x) = c · ψ(x), this integral is
equal to c2 > 1.

From the physical viewpoint, however, this integral describes the probability to find a
particle somewhere, so it must be equal to 1. So, from the physical viewpoint, the only
linear combinations which make physical sense are the ones for which this integral is equal
to 1.

For ψ(x) = ∑n

i=1 ci · ψi(x), the integral takes the form

∫

R3
|ψ(x)|2 dx =

∫

R3
ψ(x) · ψ∗(x) dx =

n∑

i=1

n∑

j=1

ci · c∗
j · 〈ψi |ψj 〉,
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where 〈ψi |ψj 〉 def= ∫
R3 ψi(x) · ψ∗

j (x) dx. Thus, from the physical viewpoint, it is important
to study such expressions 〈ψ |ψ ′〉.

Case of Multi-Particle Systems Similarly, a state of an N -particle system is described by
a function ψ(x1, . . . , xN), where x1, . . . , xN are coordinates of these particles. Here, the
multi-dimensional probability density function |ψ(x1, . . . , xN)|2 describes the probabilities
of different locations x1, . . . , xN , and the fact that the overall probability should be equal to
1 means that

∫ |ψ(x1, . . . , xN)|2 dx1 . . . dxn = 1.
Similarly to the 1-dimensional case, superposition is represented by a linear combination.

Towards a General Case In both cases, the expressions 〈ψ |ψ ′〉 satisfy the properties that
〈ψ ′ |ψ〉 = 〈ψ |ψ ′〉∗, 〈ψ |ψ〉 ≥ 0, and that

〈c1 · ψ1 + c2 · ψ2 |ψ ′〉 = c1 · 〈ψ1 |ψ ′〉 + c2 · 〈ψ2 |ψ ′〉;
〈ψ | c1 · ψ ′

1 + c2 · ψ ′
2〉 = c∗

1 · 〈ψ |ψ ′
1〉 + c∗

2 · 〈ψ |ψ ′
2〉.

General Case: A Hilbert Space Description In the general case, we need a linear structure
to define composition. To take into consideration that the overall probability should be equal
to 1, we need a complex-valued bilinear function 〈ψ |ψ ′〉 defined on pairs of states, which
satisfies the above properties. A linear space with a bilinear operation which satisfies these
properties is called a Hilbert space H .

For example, in the case of a single particle, the corresponding Hilbert space is the space
of all square integrable functions ψ(x) from the space R3 to real numbers, i.e., functions for

which ‖ψ‖2 def= ∫ |ψ(x)|2 dx < +∞.
Of course, not all elements of a linear space can be actual states of a quantum system,

only those elements for which ‖ψ‖2 def= 〈ψ |ψ〉 = 1. In other words, physical states form a
unit sphere {ψ : ‖ψ‖2 = 1} in a Hilbert space.

Measurements: A General Description In quantum physics, a measurement is described
by a self-adjoint operator A : H → H , i.e., an operator for which 〈ψ |Aψ ′〉 = 〈Aψ |ψ ′〉 for
all states ψ,ψ ′ ∈ H . For example, the measurement of an x coordinate can be described by
an operator x : ψ(x) → x · ψ(x).

Eigenvalues λj of the operator A represent possible values of the measurement result.
When the measurement result is λj , the original state ψ of the quantum system “transforms”
into a new state ψ ′ = c · Pj (ψ), where Pj is a projection to the corresponding eigenspace,
and c is a normalizing factor (which ensures that ‖ψ ′‖2 = 1). The probability that the mea-
surement will result in the j -th eigenvalue λj is equal to |Pj (ψ)|2.

2 Pauli’s Question: What Is Known and What Is still Open

Pauli’s Original Question: How Uniquely Can We Determine the Quantum State Based on
the Measurements? For a single particle, if all we measure are coordinates, then we can
only determine the absolute values |ψ(x)| of the wave function ψ(x). By measuring other
characteristics such as momentum, we can gain more information about the wave function.

W. Pauli asked the following natural question (see, e.g., [28]): to what extent can we
determine the wave function from the measurements?
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First Clarification: We Need a Generator Generating Systems in the Same State After we
measure, e.g., coordinates of a single particle, the original state transforms into the corre-
sponding eigenstate, i.e., into a state in which a particle is located in the corresponding spa-
tial location with probability 1. After this measurement, the remaining information about
the original state is lost.

What Pauli had in mind was a typical quantum situation when we do not only have a
single particle, we also have a (potentially infinite) ensemble of particles generated in the
same state ψ . For that, we need to have a generator which generates particles in the same
state.

For example, we may have a laser generating photons in a given state, or a special type
of radioactivity. Once we have such an ensemble, we can measure coordinates on some of
these particles, momenta on some other particles, etc. So, by applying different measure-
ments procedures A and applying each such procedure many times, we can determine the
probabilities |Pj (ψ)|2 of all possible eigenvalues λj .

Second Clarification: We Need a Projective Hilbert Space From the above description of
the measurement process, we can easily conclude that for every state ψ , for every measure-
ment A, and for every real number α, for the state ψ ′ = ei·α · ψ , the probability to get any
measurement result λj is the same for the original state ψ .

So, from the physical viewpoint, the elements ψ and ψ ′ = ei·α · ψ of the Hilbert space
H actually describe the same state. Thus, strictly speaking, a quantum state should be asso-
ciated not with a single element ψ ∈ H , but rather with an equivalence class {ei·α · ψ}α of
such elements.

In geometry, the collection of such equivalence classes is called a projective space. So,
in these geometric terms, we can say that the actual space of possible states is a projective
Hilbert space P (H).

In these terms, Pauli’s question is: is it possible to uniquely determine the state ψ ∈ P (H)

based on the (physically meaningful) measurements? And if we cannot determine the state
uniquely, “how uniquely” can we determine this state—i.e., when can two different states
ψ �= ψ ′ be distinguished by appropriate measurements?

Pauli’s Question: What Is Known It is known that for particles, by performing appropriate
measurements, we can uniquely determine the original state ψ ∈ P (H); see, e.g., [9, 11, 17,
23–26, 32].

Specifically, in addition to measuring coordinates and momenta at the initial moment
of time, we can place the particle in some (physically meaningful) potential fields and re-
measure coordinates and momenta after a certain time. Based on the results of these mea-
surements, we can uniquely reconstruct ψ ∈ P (H).

Pauli’s Question: Open Problems Related to Practical Implementation Before describing
the main problem of interest to us, let us mention several open problems directly related to
the above results.

These problems are related to the fact that the above results show that in principle, we can
uniquely reconstruct the quantum state ψ by performing appropriate measurements. This
positive answer does not yet mean that we have an easy-to-implement efficient practical
procedure for such reconstruction. To design such a procedure, we must solve two types of
open problems.

The first class of open problems is related to the fact that the practical implementation of
the specific complex measurement procedures prescribed in the above papers may be prac-
tically difficult. It is therefore reasonable to try to restrict ourselves to easier-to-implement
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procedure. Once we restrict ourselves to operators A from a certain class A, it is reasonable
to ask whether measurements A from a given class A enable us to uniquely recover the
quantum state. Many of such questions are still open.

Another class of open problems is related to the computational complexity of reconstruct-
ing ψ . In general, the problem of reconstructing ψ from the given measurement results is
computationally difficult (to be precise, NP-hard); see, e.g., [18]. Crudely speaking, this
means that in some cases, for this reconstruction, we need computation time which exceeds
the lifetime of the Universe. So, from the practical viewpoint, we must make sure that in the
reconstruction scheme we propose, not only we can theoretically reconstruct ψ , but that we
can perform all needed computations in reasonable time.

Pauli’s Question: A Remaining Fundamental Problem In the original question, we as-
sumed that we have a generator which generates particles prepared in the same state ψ , and
the question was how we can determine this state ψ .

In practice, we can have an ensemble of particles prepared in different states ψ1,ψ2, . . . ,

ψn, . . . . This may happen, e.g., when we observe rare high-energy events in cosmic rays.
For example, a faraway quasar emits a series of particle in the state ψ1; these high-

energy particles travel to all sides of the Universe, but only one of these particles reaches
our detector: all the others end up on different planets and maybe even in different galaxies.
Next, another quasar (or another cosmic event) emits another bunch of particles, all prepared
in a different state ψ2; again, we observe only one of these states, etc.

In such situations, the original Pauli’s question takes the following form: what can we
determine about the original sequence of states � = (ψ1, . . . ,ψn, . . .) based on our mea-
surements?

Mathematical comment From the mathematical viewpoint, if we have two independent par-
ticles in the state ψ1 ∈ H1 and ψ2 ∈ H2, then the state of the 2-particle system can be de-
scribed as a tensor product of these states: ψ = ψ1 ⊗ ψ2 ∈ H1 ⊗ H2.

Similarly, the state of an infinite sequences of independent particles can be described as
an infinite tensor product ψ1 ⊗ ψ2 ⊗ · · · .

Simple Observation: We Cannot Uniquely Determine the Sequence of States As we have
mentioned, if we only measure a state once, we cannot uniquely determine this state. In our
new situation, we measure every state ψi exactly once, so we cannot uniquely determine
each of these states.

Thus, in contrast to the generator case, when the state ψ can be uniquely determined, we
cannot uniquely determine the sequence of states � . The question is: what can we deter-
mine? When can we distinguish between the two different sequences � = (ψ1,ψ2, . . .) and
� ′ = (ψ ′

1,ψ
′
2, . . .)?

What Would Be a Good Answer to This Question As we have just mentioned, for the case
of a generator, we can uniquely determine the quantum state ψ ∈ P (H) from measurements.

Our path to this answer was not as direct as it may now seem. First, we mentioned that
states are described by functions ψ(x) from the Hilbert space H . Then, we observed that
we cannot uniquely determine the corresponding function ψ(x) ∈ H from measurements,
because a different function ψ ′(x) = ei·α · ψ(x) leads to exact same measurement results.
We resolved this non-uniqueness by considering the corresponding factor-space (= the set
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of equivalence classes), which in that case was the projective Hilbert space P (H). On this
factor-space, reconstruction is unique.

Similarly, for general ensembles, we know that the sequence � cannot be uniquely de-
termined by measurements: some sequences � ′ �= � cannot be distinguished by measure-
ments. We would like to describe the corresponding equivalence classes so that in the result-
ing factor-space, reconstruction will be unique.

This is, in essence, what we will do in this paper.

Comment 1 Several results presented in this paper have been previously announced in [21].

Comment 2 The fact that from the physical viewpoint, wave functions may not be the best
descriptions of states, have been emphasized by many physicists; see, e.g., Finkelstein [4].
In the present paper, we translate the corresponding physical arguments into a new mathe-
matical formalism: namely, we provide new mathematical objects for describing quantum
states, objects which are, in our opinion, closer to the physical intuition.

This Question Has Potential Applications to Quantum Cosmology Let us show that there
is a fundamental situation in which such a factor-space can be very useful: quantum cosmol-
ogy.

According to modern physics, all the physical processes in the world should be described
by quantum mechanics. Usually, the state of a quantum object is described by a wave func-
tion. This description makes perfect physical sense when we analyze, e.g., the states of
elementary particles. We usually have a large ensemble of similar particles in the same state
ψ ; thus, by measuring different quantities on different particles from this ensemble, we can
uniquely reconstruct the state ψ .

From the purely mathematical viewpoint, we can apply the same formalism to the de-
scription of the Universe as a whole, and claim that the state of the Universe is described by
a wave function ψ . However, our Universe is unique, so we only have a single object in this
state. We have already mentioned that by performing measurements on a unique objects,
we cannot determine the state. Thus, the wave function describing the state of the Universe
cannot be experimentally determined and thus, has no direct physical sense.

This argument is in line with the usual physicists’ claim that a wave function cannot be
determined (and thus does not make physical sense) for a unique object—a wave function
only makes physical sense if we have an ensemble of identical objects prepared in the same
state.

Comment 3 In principle, we can try to go around this problem by assuming that instead
of a unique Universe, we have a “multi-verse” consisting of many alternative universes.
However, from the operationalistic viewpoint, this does not solve our problem:

• If our universe does not interact with other universes, then we cannot check what is going
on in those universes, and so, this assumption does not have any operationalistic sense.

• On the other hand, if our Universe does interact with other universes (e.g., along the
lines of A.D. Sakharov’s paper [29] cited in [22]), then in reality, the whole set of these
universes should be considered the true (multi-dimensional) universe, and the problem
appears again.

Applications to Quantum Cosmology: Continued How can the above description help?
The Universe consists of many parts with very weak interaction between them. Therefore,
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with a good accuracy, we can assume that these parts are independent and can, therefore,
be described by separate wave functions ψ1, . . . ,ψn, . . . . From the mathematical viewpoint,
the state of the Universe thus corresponds to the sequence � = (ψ1, . . .) of functions ψi .

If we know the corresponding factor-space, then we will be able to say that a proper
physical description of the state of the universe is by an element of this factor space.

3 Auxiliary Reminder: Closeness in the Projective Hilbert Space

To Describe How Accurately We Can Reconstruct Individual States, We Need a Metric on
the Set of All States We have already mentioned that for an ensemble of objects in different
states ψi , we cannot reconstruct each state ψi uniquely. So, a natural question is: how close
can we reconstruct this state?

This leads to another question: what is a natural way to described closeness of states in
the projective Hilbert space?

In Hilbert Space, There Is a Natural Metric but It Is not Sufficient In a Hilbert space, there
is a natural distance between the two elements ψ and ψ ′: the value ‖ψ − ψ ′‖.

However, this value is not exactly what we want. Indeed,

• as we have mentioned, the wave functions ψ and ψ ′ = ei·α ·ψ describe the same physical
state, but

• the Hilbert distance between these two states is non-zero: e.g., for α = π , we have ψ ′ =
−ψ , hence ψ − ψ ′ = ψ − (−ψ) = 2ψ and ‖ψ − ψ ′‖ = 2‖ψ‖ = 2.

Natural Idea A natural way to transform the Hilbert distance into a physically adequate
distance is to consider the smallest possible distance between ψ and all the wave functions
representing ψ ′, i.e., define

d(ψ,ψ ′) def= min
α

‖ψ − ei·α · ψ ′‖.

Let us simplify the resulting formula into an easy-to-compute expression.

Derivation of the Corresponding Formula To simplify the above formula, we take into

account that d2(ψ,ψ ′) def= minα ‖ψ − ei·α · ψ ′‖2 and that ‖a‖2 = 〈a |a〉. As a result, we
conclude that

‖ψ − ei·α · ψ ′‖2 = 〈ψ − ei·α · ψ ′ |ψ − ei·α · ψ ′〉
= 〈ψ |ψ〉 + 〈ψ ′ |ψ ′〉 − ei·α · 〈ψ |ψ ′〉 − e−i·α · 〈ψ ′ |ψ〉.

Taking into account that ‖ψ‖2 = ‖ψ ′‖2 = 1 and that 〈ψ ′ |ψ〉 = 〈ψ |ψ ′〉∗, we conclude that

‖ψ − ei·α · ψ ′‖2 = 2 − ei·α · 〈ψ |ψ ′〉 − (ei·α · 〈ψ |ψ ′〉)∗ = 2 − 2 · Re(ei·α · 〈ψ |ψ ′〉).

This difference is the smallest when the real part of the product ei·α · 〈ψ |ψ ′〉 takes the
largest possible value. The real part of a complex number cannot exceed its magnitude, and
for the appropriate phase, the real part is equal to the magnitude. Thus, the minimum in the
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definition of d2(ψ,ψ ′) is attained when the real part becomes the magnitude. So, we arrive
at the following formula:

Resulting Formula

d2(ψ,ψ ′) = 2 − 2|〈ψ |ψ ′〉|.

4 Kolmogorov Randomness as a Way to Formalize Distinguishability

Need for an Algorithmic Notion of Randomness From the physical viewpoint, what does
it mean to be able to distinguish between two different sequences of states � = (ψ1,ψ2, . . .)

and � ′ = (ψ ′
1,ψ

′
2, . . .)? It means that we can select appropriate measurements Ai , i =

1,2, . . . (with eigenvalues λi1, λi2, . . .) so that after applying Ai to the state ψi , we get a
sequence of eigenvalues λij which cannot occur if we apply these same operators to the
states ψ ′

i .
In quantum physics, we can only predict the probabilities of different values. In other

words, the only prediction that we can make about the sequence of the measurement results
is that this sequence is, in some reasonable sense, “random” with respect to the correspond-
ing probability measure.

To describe this in formal terms, we need to have a formalized (“algorithmic”) definition
of randomness.

Mathematical comment In terms of the tensor product state ψ = ψ1 ⊗ ψ2 ⊗ · · ·, measuring
Ai in a state ψi is equivalent to measuring a single tensor product operator A1 ⊗ A2 ⊗ · · ·
in the state ψ .

Kolmogorov-Martin-Löf Randomness: Motivations A formalized definition of random-
ness was provided by Kolmogorov and Martin-Löf; see, e.g., [20]. Let us explain its main
ideas on the example of the simplest case when we have n independent random variables
each of which take the value 0 or 1 with probability 1/2.

When we say that the actual sequence ω = (ω1ω2 . . .) is random, we mean that it should
satisfy all the laws of probability: for example, the ratio of 0s in a subsequence ω1 . . .ωn

should tend to 1/2, the deviation between this ratio and 1/2 should asymptotically be de-
scribed by an appropriate Gaussian distribution, etc.

In probability theory, all these probability laws are formulated as follows: for almost all
sequences (i.e., with probability 1), the ratio tends to 1/2, the distribution of the deviation
tends to Gaussian, etc. For each such law, there is a set of probability measure 0, and all
sequences outside this set satisfy this law. In these terms, the fact that a sequence is random
means that it does not belong to any of these sets of measure 0.

Of course, we cannot simply claim that the sequence ω does not belong to any set of
measure 0: because ω belongs to the 1-element set {ω}, and for the probability measure cor-
responding to our simple situation, every 1-element set has probability 0. The good news is
that when we talk about the laws of probability, we only mean laws which can be expressed
by a finite sequence of symbols in some formal (mathematical) language. There are only
countably many such sequences. So, if we restrict ourselves to sets of probability 0 which
are definable (in some reasonable set), then we can define a random sequence as a sequence
which does not belong to any of such sets.

These are countably many definable sets of measure 0, so their union also has measure
0, and thus, almost all sequences are random in this sense.
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Kolmogorov-Martin-Löf Randomness: Resulting Definition In a nutshell, this is the whole
definition of Kolmogorov-Martin-Löf randomness. We fix some formal language, and we
say that a sequence is random with respect to a given probability measure if it does not be-
long to any set of measure 0 which is definable in this language (i.e., which can be described
by a formula from this formal language).

For details and results related to this definition, see, e.g., [20].

Kolmogorov-Martin-Löf Randomness Have Been Used in Quantum Physics The idea of
using the above notion of randomness was first proposed in [1]. Following applications have
been overviewed in [20]; see also [13–16].

Our New Application Is Different from the Previous Ones By itself, the notion of algorith-
mic randomness does not change any experimental results, it simply formalizes the intuitive
notion of randomness. In accordance with this fact, the results of the previous applications
of this notion to quantum mechanics were mainly foundational.

Our new result is different: we not only provide an answer to a foundational question
of when two sequences of states can be distinguished, we also produce an exact analytical
criteria for such distinguishability.

Now, we are ready for a formal description of our result.

5 Definitions and the Main Results

Definition 1 Let H1,H2, . . . be a sequence of Hilbert spaces.

• By a sequence of states, we mean a sequence (� = (ψ1,ψ2, . . .) for which ψi ∈ Hi .
• By a sequence of measurements, we mean a sequence A = (A1,A2, . . .) of self-adjoint

operators Ai : Hi → Hi .
• For each i, for each ψi ∈ Hi , and for each Ai : Hi → Hi , we define a probability mea-

sure μi(Ai,ψi) on the set of real numbers as follows: it is located on the eigenvalues
λi1, λi2, . . . of the operator Ai , and the probability of the j -th eigenvalues λij is equal to
|Pij (ψi)|2, where Pij denotes the projection on the corresponding eigenspace.

• For each � and A, we define the measure μ(A,�) on the set of all sequences of real
numbers as the Cartesian product of the measures μi .

• We say that a sequence of real numbers is a possible result of measuring A on � if this
sequence is random w.r.t. μ(A,�); the set of all such possible results will be denoted by
Poss(A,�).

• We say that a sequence of measurements A cannot distinguish between the sequence of
states � and � ′ if every possible result of measuring A on � is also a possible result of
measuring A on � ′: Poss(A,�) = Poss(A,� ′).

• We say that sequences � and � ′ are distinguishable if there exists A for which no pos-
sible result of measuring A on � can occur when we measure A on � ′: Poss(A,�) ∩
Poss(A,� ′) = ∅.

In other words, sequences are distinguishable if we can organize an appropriate sequence
of measurements which enables us to distinguish between them. The following result shows
that it is important to select appropriate measurements.

Proposition 1 For every two sequences of states � and � ′, there exists a sequence of mea-
surements A which cannot distinguish them.
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Comment For readers’ convenience, the proofs are placed in the special Appendix.

Theorem Two sequences of states � = (ψ1,ψ2, . . .) and � ′ = (ψ ′
1,ψ

′
2, . . .) are distinguish-

able if and only if

• either ψi ⊥ ψ ′
i (i.e., 〈ψi |ψ ′

i 〉 = 0) for some i,
• or

∑∞
i=1 d2(ψi,ψ

′
i ) = +∞.

Discussion One can argue that the case when ψ ⊥ ψ ′
i is not very physical. Indeed, in

practice, states are usually generated with some accuracy, and if we slightly deviate from ψi

or from ψ ′
i , we lose orthogonality. It is therefore reasonable to redefine distinguishability in

such a way that it will be stable with respect to such minor deviations.

Definition 2 Let � = (ψ1,ψ2, . . .) and �̃ = (ψ̃1, ψ̃2, . . .) be two sequences of states, and
let ε = (ε1, ε2, . . .) be a sequence of positive real numbers. We say that � and � ′ are ε-close
if d(ψi,ψ

′
i ) ≤ εi for all i.

Definition 3 We say that two sequences of states � = (ψ1,ψ2, . . .) and � ′ = (ψ ′
1,ψ

′
2, . . .)

are stably distinguishable if the following two statements hold:

• � and � ′ are distinguishable, and
• there exists a sequence ε = (ε1, ε2, . . .) of positive real numbers with the following prop-

erty: if �̃ is ε-close to � and �̃ ′ is ε-close to � ′, then �̃ and �̃ ′ are also distinguishable.

In other words, the two sequences are stably distinguishable if they are guaranteed to be
distinguishable even if we implement them with some inaccuracy.

Proposition 2 Two sequences of states � = (ψ1,ψ2, . . .) and � ′ = (ψ ′
1,ψ

′
2, . . .) are stably

distinguishable if and only if
∑∞

i=1 d2(ψi,ψ
′
i ) = +∞.

So, the sequences are strongly distinguishable if and only if d2(�,� ′) = +∞, where

d2(�,� ′) def=
∞∑

i=1

d2(ψi,ψ
′
i ).

Thus, the states cannot be distinguished if and only if d2(�,� ′) < +∞.
The relation d2(�,� ′) < +∞ is an equivalence relation, so the desired space of se-

quences of sets is the factor-set of the tensor product H1 ⊗ H2 ⊗ · · · over this relation. In
particular, a proper description of quantum cosmology equations should produce an element
of this factor space.

6 Auxiliary Results and an Open Problem

First Auxiliary Result: Weak Distinguishability In the above text, we defined the two se-
quences to be distinguishable if we can distinguish them based on an arbitrary measurement
result. It may be reasonable to define weak distinguishability as the possibility to distinguish
based on some measurement results. A natural question is: when can the two sequences of
states be weakly distinguished?
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Definition 4 We say that sequences � and � ′ are weakly distinguishable if there exists A

and a possible result of measuring A on � which cannot occur when we measure A on � ′
(or vice versa), i.e., Poss(A,�) �= Poss(A,� ′).

Proposition 3 Two sequences of states � and � ′ are weakly distinguishable if and only if
they are different: � �= � ′.

Second Auxiliary Result: Going Back to the Case When We Have a Sequence of Identical
States The above result is about the situation when different states ψi are, in general,
different. However, it has an interesting consequence for the case when we have states ψ1 =
ψ2 = · · · = ψ generated by the same state generator. Indeed, in such a generator situation,
we simply assume that all the state are indeed the same. A natural question is: can we check
this assumption experimentally? In other words, if in reality, states are different, will we be
able to distinguish this situation from the case when they are identical?

The above theorem provides an answer to this question: what we need is to distinguish
between the sequence of states � = (ψ1,ψ2, . . .), and the ideal sequence (ψ,ψ, . . .):

Corollary 1 A sequence of states � = (ψ,ψ2, . . .) can be distinguished from the ideal se-
quence (ψ,ψ, . . .) if and only if:

• either ψi ⊥ ψ for some i,
• or

∑∞
i=1 d2(ψi,ψ) = +∞.

Corollary 2 A sequence of states � = (ψ,ψ2, . . .) can be stably distinguished from the
ideal sequence (ψ,ψ, . . .) if and only if

∑∞
i=1 d2(ψi,ψ) = +∞.

Remaining Open Problem: Going Beyond Kolmogorov-Martin-Löf Definition of Random-
ness In this paper, we used Kolmogorov-Martin-Löf description of randomness. It is worth
mentioning that while this definition captures most of physicists’ ideas about randomness,
it does not fully capture all of them. This can be illustrated already on the simplest prob-
ability measure, when we have a fair coin which can fall heads or tails with equal prob-
ability 1/2. In the Kolmogorov-Martin-Löf formalization, if we have an infinite sequence
ω = (ω1ω2 . . .) which is random with respect to the corresponding probability measure,
and we add 1,000,000 heads H · · ·H in front of this sequence, the resulting new sequence
H . . .Hω1ω2 . . . is still random. This is clearly counter-intuitive: we do not expect a sequence
which starts with a million heads to be truly random.

This fact has been realized early on. There exist modifications of the Kolmogorov-
Martin-Löf definition in which this phenomenon does not happen—and which are thus in
better accordance with the physicists’ intuition about randomness; see, e.g., [5, 12, 20] and
references therein. It is therefore desirable to extend our analysis to these modified defini-
tions of randomness.

7 Conclusions

It is well known that if we have a generator which generates objects in the same quantum
state ψ , then, by applying different measurements A1,A2, . . . to different objects from the
resulting ensemble, we can uniquely determine this state ψ (uniquely modulo a known trans-
formation ψ → ei·α · ψ ). For such a generator situation, this possibility provides a positive
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answer to the question asked by W. Pauli: to what extent can we reconstruct a wave function
from measurements.

If different objects from the ensemble are in different states ψ1,ψ2, . . . , and we are only
allowed one measurement Ai for each of these states, then, of course, we cannot reconstruct
the sequence � = (ψ1,ψ2, . . .) uniquely. For such a situation, Pauli’s question takes the fol-
lowing form: when is it possible to select appropriate measurements which would enable us
to distinguish between two given sequences � = (ψ1,ψ2, . . .) and � ′ = (ψ ′

1,ψ
′
2, . . .)? One

possibility is an (unstable) case when ψi ⊥ ψ ′
i . If we only consider stable distinguishability,

then the only possibility is d2(�,� ′) def= ∑∞
i=1 d2(ψi,ψ

′
i ) = +∞.

Thus, in this case, a proper description of the state of this sequence of object is a sequence
of wave functions factored over the relation d2(�,� ′) < +∞.

This result is of potential interest to quantum cosmology where we deal with a unique
object: our Universe (so there is no generator to produce many copies of it :-).
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Appendix Proofs

Proof of Proposition 1 To prove the proposition, let us select, for each i, an appropriate
operator Ai . For those i for which ψi = ψ ′

i , every Ai will do, since here clearly μ(Ai,ψi) =
μ(Ai,ψ

′
i ).

Let us now consider the values i for which ψi �⊥ ψ ′
i , i.e., for which 〈ψi |ψ ′

i 〉 �= 0. In

this case, let us take ci
def= 〈ψi |ψ ′

i
〉

|〈ψi |ψ ′
i
〉| . By construction, this complex ratio ci is a number of

magnitude 1, i.e., |ci |2 = ci · c∗
i = 1.

To find an appropriate Ai , we take two vectors di = ψi − ci ·ψ ′
i and si = ψi + ci ·ψ ′

i . Let
us show that these two vectors are orthogonal. Indeed,

〈di | si〉 = 〈ψi − ci · ψ ′
i |ψi + ci · ψ ′

i 〉
= 〈ψi |ψi〉 − ci · 〈ψ ′

i |ψi〉 + c∗
i · 〈ψi |ψ ′

i 〉 − ci · c∗
i · 〈ψ ′

i |ψ ′
i 〉.

Since both ψi and ψ ′
i are states, we have 〈ψi |ψi〉 = 〈ψ ′

i |ψ ′
i 〉 = 1. Due to ci · c∗

i = 1, we
conclude that

〈di | si〉 = −ci · 〈ψ ′
i |ψi〉 + c∗

i · 〈ψi |ψ ′
i 〉.

Substituting the definition of ci and using the fact that 〈b |a〉 = 〈a |b〉∗, we conclude that
〈di | si〉 = 0, i.e., that di ⊥ si .

We can therefore normalize these two orthogonal vectors into Di = di

‖di‖ and Si = si
‖si‖ ,

and take an operator Ai for which Di and Si are eigenvectors corresponding to different
eigenvalues. For Di , the corresponding probabilities are equal to

|〈ψi |Di〉|2 = |〈ψi |di〉|2
‖di‖2

and

|〈ψ ′
i |Di〉|2 = |〈ψ ′

i |di〉|2
‖di‖2

.
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Thus, to prove that these probabilities coincide, it is sufficient to prove that

|〈ψi |di〉|2 = |〈ψ ′
i |di〉|2.

Indeed,

〈ψi |di〉 = 〈ψi |ψi − ci · ψ ′
i 〉 = 〈ψi |ψi〉 − c∗

i · 〈ψi |ψ ′
i 〉.

Using the definition of ci and the fact that 〈ψi |ψi〉 = 1, we thus conclude that

〈ψi |di〉 = 1 − 〈ψi |ψ ′
i 〉∗ · 〈ψi |ψ ′

i 〉
|〈ψi |ψ ′

i 〉|
= 1 − |〈ψi |ψ ′

i 〉|.

Similarly,

〈ψ ′
i |di〉 = 〈ψ ′

i |ψi − ci · ψ ′
i 〉 = 〈ψ ′

i |ψi〉 − c∗
i · 〈ψ ′

i |ψ ′
i 〉.

Using the definition of ci and the fact that 〈ψ ′
i |ψ ′

i 〉 = 1, we thus conclude that

〈ψ ′
i |di〉 = c∗

i · |〈ψi |ψ ′
i 〉| − c∗

i = −c∗
i · (1 − |〈ψi |ψi〉|).

Since |ci | = |c∗
i | = 1, we conclude that indeed |〈ψi |di〉|2 = |〈ψ ′

i |di〉|2.
For Si , the proof is similar. The proposition is proven. �

Proof of the Theorem

1◦. If for some i, we have ψi ⊥ ψ ′
i , then we can take a projection on ψi as the operator Ai .

Then:

• for the sequence of states which contains ψi , the result of i-th measurement will be 1; and
• for the sequence of states which contains ψ ′

i , the result of i-th measurement will be 0.

Thus, we can easily distinguish the two sequences of states.

2◦. To complete the proof, we must prove that if ψi �⊥ ψ ′
i for all i, then the existence of

the sequence of measurements A for which Poss(A,�) ∩ Poss(A,� ′) = ∅ is equivalent to∑∞
i=1 d2(ψi,ψ

′
i ) = +∞.

2.1◦. Let us first prove that if
∑∞

i=1 d2(ψi,ψ
′
i ) = +∞, then there exists a sequence of mea-

surement Ai for which Poss(A,�) ∩ Poss(A,� ′) = ∅.
Indeed, let us take, as Ai , projection on ψi . Then, for the sequence of states � =

(ψ1,ψ2, . . .), the only possible result of measuring A is the sequence (1,1, . . .).
Let us show that this sequence is not possible if we measure A on the sequence of

states � ′. Indeed, in this case, the probability of having 1 in the i-th measurement is equal to
|〈ψi |ψ ′

i 〉|2. Thus, the overall probability of this sequence is equal to
∏∞

i=1 |〈ψi |ψ ′
i 〉|2, i.e.,

to p2, where p
def= ∏∞

i=1 |〈ψi |ψ ′
i 〉|.

Let us prove that p = 0; then, p2 = 0 and thus, the sequence of measurement results
(1,1, . . .) is not possible for � ′—since it belongs to the definable set of μ(A,� ′)-measure 0.

Indeed, due to the above formula for the distance d(ψ,ψ ′) on the projective Hilbert

space, we conclude that |〈ψi |ψ ′
i 〉| = 1 − d2(ψi ,ψ

′
i
)

2 . So, the desired probability p takes the
form

p =
∞∏

i=1

(

1 − d2(ψi,ψ
′
i )

2

)

.
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Since none of the states are mutually orthogonal, none of the terms in the product are 0 s.
It is known that in this situation, the product p converges to a non-zero value if and only if
the corresponding sum

∞∑

i=1

d2(ψi,ψ
′
i )

2
= 1

2
·

∞∑

i=1

d2(ψi,ψ
′
i )

converges. Since this sum diverges, we have p = 0.

2.2◦. Let us now prove that if there exists a sequence of measurement Ai and a se-
quence of real numbers which is possible for both sequences of states � and � ′, then∑∞

i=1 d2(ψi,ψ
′
i ) = +∞.

We will illustrate the proof of this statement on the example of binary measurements,
when each operator Ai only has two eigenvalues; this proof can be easily extended to the
general case.

2.2.1◦. In general, the non-existence of a common random sequence means that there exists
a definable set which has measure 0 in the sense of the first measure and whose comple-
ment has measure 0 in the sense of the second measure. In measure theory and probability
theory, probability measures with such a property (without the word “definable”) are called
(mutually) singular. So, the absence of a common random vector means that the product
measures μ(A,�) and μ(A,� ′) are mutually singular.

Mutual singularity of two probability measures, with densities ρ(ω) and ρ ′(ω) w.r.t.
some measure ρ0, can be checked by computing their Hellinger distance (see, e.g., [2, 6–8,
10, 27]):

dH (ρ,ρ ′) def=
√∫

(
√

ρ − √
ρ ′)2 dρ0.

It is worth mentioning that this distance does not depend on the choice of ρ0.
Specifically, the measure ρ and ρ ′ are mutually singular if and only if dH (ρ,ρ ′) = √

2,
i.e., if and only if d2

H (ρ,ρ ′) = 2. By definition of the Hellinger distance, d2
H (ρ,ρ ′) =∫

ρ dρ0 + ∫
ρ ′ dρ0 − 2 · H(ρ,ρ ′), where

H(ρ,ρ ′) def=
∫ √

ρ · √ρ ′ dρ0

is called Hellinger affinity. Since ρ and ρ ′ are density functions, we have
∫

ρ dρ0 =∫
ρ ′ dρ0 = 1 hence d2

H (ρ,ρ ′) = 2 − 2 · H(ρ,ρ ′). So, d2
H (ρ,ρ ′) = 2 if and only if

H(ρ,ρ ′) = 0.
Thus, the two measures ρ and ρ ′ are mutually singular if and only if H(ρ,ρ ′) = 0.

2.2.2◦. Following [33], let us describe the explicit expression for H(ρ,ρ ′) for the case when
we have product measures.

To be more precise, we consider the case when both measures ρ and ρ ′ are located on
infinite binary sequences ω = (ω1ω2 . . .):

• For each i, the probability of ωi = 1 is equal, correspondingly, to pi (for ρ) and to p′
i

(for ρ ′).
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• The probability of ωi = 0 is equal to 1 − pi (for ρ) and to 1 − p′
i (for ρ ′).

Different elements ωi are assumed to be independent.
In this case, as a measure ρ0, it is reasonable to take the standard probability measure on

the set of all infinite binary sequences, i.e., a probability measure in which each bit ωi ap-
pears with probability 1/2, and different bits ωi and ωj (i �= j ) are statistically independent.
Then, for each i, the i-th probability density ρi(ωi) is equal:

• to ρi(1) = pi

1/2 = 2pi when ωi = 1 and

• to ρi(0) = 1−pi

1/2 = 2(1 − pi) for ωi = 0.

Both cases can be described by a single expression

ρi(ωi) = 2 · [(1 − ωi) + (2ωi − 1) · pi].

Similarly, for the measure ρ ′, the i-th probability density takes the form

ρ ′
i (ωi) = 2 · [(1 − ωi) + (2ωi − 1) · p′

i].

Since the bits ωi are independent, the overall probability density ρ is equal to the prod-
uct of these densities: ρ(ω) = ∏∞

i=1 ρi(ωi) and ρ ′(ω) = ∏∞
i=1 ρ ′

i (ωi). Thus, H(ρ,ρ ′) is the
expected value of the corresponding product:

H(ρ,ρ ′) = E
[√

ρ(ω) · √ρ ′(ω)
] = E

[ ∞∏

i=1

√
ρi(ωi) · ρ ′

i (ωi)

]

.

Since the values ωi are independent, the expected value of this product is equal to the product
of the corresponding expected values:

H(ρ,ρ ′) = E
[√

ρ(ω) · √ρ ′(ω)
] =

∞∏

i=1

Ei,

where we denoted Ei
def= E[√ρi(ωi) · ρ ′

i (ωi)].
The i-th expected value Ei means that we combine the values corresponding to ωi = 1

and ωi = 0 with probabilities 1/2: for every function f , we have E[f (ωi)] = (1/2) ·f (1)+
(1/2) · f (0). In particular, in our case, we have

Ei = (1/2) · √2pi ·
√

2p′
i + (1/2) · √2(1 − pi) ·

√
2(1 − p′

i ),

hence

Ei = √
pi ·

√
p′

i + √
1 − pi ·

√
1 − p′

i .

2.2.3◦. It is known that, in general, an infinite product
∏∞

i=1(1 − ai) of positive numbers
1 − ai > 0 is equal to 0 if and only if the sum

∑∞
i=1 ai is infinite. To apply this fact

to our case, we must take ai = 1 − Ei . Then, H(ρ,ρ ′) = ∏∞
i=1 Ei = 0 if and only if∑∞

i=1(1 − Ei) = +∞. So, if the measures ρ and ρ ′ are mutually singular and H(ρ,ρ ′) = 0,
we have

∑∞
i=1(1 − Ei) = +∞.
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The expression 1 − Ei can be reformulated as

1 − Ei = 1

2
· (2 − 2Ei)

= 1

2
· [pi + (1 − pi) + p′

i + (1 − p′
i ) − 2 · √pi ·

√
p′

i − 2 · √1 − pi ·
√

1 − p′
i

]

= 1

2
· [(√pi −

√
p′

i

)2 + (√
1 − pi −

√
1 − p′

i

)2]
.

So, if the measures ρ and ρ ′ are mutually singular, then

∞∑

i=1

[(√
pi −

√
p′

i

)2 + (√
1 − pi −

√
1 − p′

i

)2] = +∞.

2.2.4◦. In terms of Kolmogorov-Martin-Löf randomness, this problem was analyzed by
Vovk in [31] (see also Problem 4.24 in [19]). In particular, Vovk proved that for the product
measures corresponding to the probabilities (p1,p2, . . .) and (p′

1,p
′
2, . . .), the non-existence

of a common possible (= random) sequence is indeed equivalent to

∞∑

i=1

[(√
pi −

√
p′

i

)2 + (√
1 − pi −

√
1 − p′

i

)2] = +∞.

For the product measures μ(A,�) and μ(A,� ′), we have pi = ‖Pi1(ψi)‖2, p′
i =

‖Pi1(ψ
′
i )‖2 1 − pi = ‖Pi2(ψi)‖2, and 1 − p′

i = ‖Pi2(ψ
′
i )‖2 for the corresponding projec-

tion operators Pi1 and Pi2. Therefore,
√

pi − √
p′

i = ‖Pi1(ψi)‖ − ‖Pi1(ψ
′
i )‖,

√
1 − pi −√

1 − p′
i = ‖Pi2(ψi)‖ − ‖Pi2(ψ

′
i )‖, and the above condition takes the form

∞∑

i=1

[(‖Pi1(ψi)‖ − ‖Pi1(ψ
′
i )‖

)2 + (‖Pi2(ψi)‖ − ‖Pi2(ψ
′
i )‖

)2] = +∞.

2.2.5◦. By definition of a distance d(ψi,ψ
′
i ) in the projective Hilbert space, we have ψi =

ei·α · ψi + δi for some vector δi for which ‖δi‖ = d(ψi,ψ
′
i ). Since each projection Pij is a

linear operator, we have Pij (ψi) = ei·α ·Pij (ψ
′
i )+Pij (δi). Thus, the triangle inequality leads

to
∣
∣‖Pij (ψi)‖ − ‖ei·α · Pij (ψ

′
i )‖

∣
∣ ≤ ‖Pij (δi)‖

and hence, to
(‖Pij (ψi)‖ − ‖ei·α · Pij (ψ

′
i )‖

)2 ≤ ‖Pij (δi)‖2.

The length of a vector in a Hilbert space does not change when we multiply this vector by
ei·α , so we have

(‖Pij (ψi)‖ − ‖Pij (ψ
′
i )‖

)2 ≤ ‖Pij (δi)‖2.

The length of a projection is always smaller than or equal that the length of a vector, so
‖Pij (δi)‖ ≤ ‖δi‖ = d(ψi,ψ

′
i ) and ‖Pij (δi)‖2 ≤ d2(ψi,ψ

′
i ). Hence, for every j , we have

(‖Pij (ψi)‖ − ‖Pij (ψ
′
i )‖)2 ≤ d2(ψi,ψ

′
i ). Therefore,

(‖Pi1(ψi)‖ − ‖Pi1(ψ
′
i )‖

)2 + (‖Pi2(ψi)‖ − ‖Pi2(ψ
′
i )‖

)2 ≤ 2 · d2(ψi,ψ
′
i ).
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Thus, the condition

∞∑

i=1

[(‖Pi1(ψi)‖ − ‖Pi1(ψ
′
i )‖

)2 + (‖Pi2(ψi)‖ − ‖Pi2(ψ
′
i )‖

)2] = +∞

implies that
∑∞

i=1 d2(ψi,ψ
′
i ) = +∞. For the case of binary measurements, the theorem is

proven.
Similar arguments apply in the general case as well. �

Proof of Proposition 2 Once can easily check that the condition ψi ⊥ ψ ′
i is not stable,

while the condition
∑∞

i=1 d2(ψi,ψ
′
i ) = +∞ is preserved if we slightly modify the states

ψi and ψ ′
i . �

Proof of Proposition 3 If the sequences � and � ′ are weakly distinguishable, then, of
course, they are different. Let us prove that if they are different, then they are weakly distin-
guishable.

Indeed, if � �= � ′, this means that for some i, we have ψi �= ψ ′
i . By using orthonomal-

ization, we can find a linear combination ψ of ψi and ψ ′
i which is orthogonal to ψi . Since

the states ψi and ψ ′
i are different, this linear combination is not orthogonal to ψ ′

i . Let us
now take, as Ai , a projection on ψ . Since |〈ψ ′

i |ψ〉| > 0, there exists a random sequence for
which the result of i-measurement is 1 and which is random with respect to μ(A,� ′)—i.e.,
which is a possible measurement result when measuring A at � ′.

On the other hand, since ψ ⊥ ψi , this sequence cannot appear when we measure A on � .
The statement is proven. �

References

1. Benioff, P.: Models of Zermelo Frankel set theories as carriers for the mathematics of physics, I, II.
J. Math. Phys. 17(5), 618–640 (1976)

2. Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1999)
3. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley, Reading

(1965)
4. Finkelstein, D.R.: The qubits of qunivac. Int. J. Theor. Phys. 42(2), 177–187 (2003)
5. Finkelstein, A.M., Kreinovich, V.: Impossibility of hardly possible events: Physical consequences. In:

Abstracts of the 8th International Congress on Logic, Methodology and Philosophy of Science, vol. 5,
Pt. 2, pp. 25–27. Moscow (1987)

6. Hellinger, E.: Die Orthogonalvarianten quadratischer Formen von unendlich vielen Variablen. Ph.D. Dis-
sertation, Göttingen (1907)

7. Hellinger, E.: Neue Begrundung der Theorie quadratischer Formen von unendlich vielen Veränderlichen.
J. Reine Angew. Math. 36, 210–271 (1909)

8. Ibragimov, I.A., Khasminski, R.Z.: Statistical Estimation: Asymptotic Theory. Springer, New York
(1981)

9. Ismagilov, R.S.: On the Pauli problem. Funct. Anal. Appl. 30(2), 138–140 (1996)
10. Kakutani, S.: On equivalence of infinite product measures. Ann. Math. 49, 214–224 (1948)
11. Kreinovich, V.: On the problem of recovering the ψ -function in non-relativistic quantum mechanics.

Theor. Math. Phys. 8(7), 56–64 (1976)
12. Kreinovich, V., Finkelstein, A.M.: In: Towards Applying Computational Complexity to Foundations of

Physics. Notes of Mathematical Seminars of St. Petersburg Department of Steklov Institute of Mathe-
matics, vol. 316, pp. 63–110. (2004). Reprinted In: J. Math. Sci. 134(5), 2358–2382 (2006)

13. Kreinovich, V., Longpré, L.: Unreasonable effectiveness of symmetry in physics. Int. J. Theor. Phys.
35(7), 1549–1555 (1996)

14. Kreinovich, V., Longpré, L.: Pure quantum states are fundamental, mixtures (composite states) are math-
ematical constructions an argument using algorithmic information theory. Int. J. Theor. Phys. 36(1),
167–176 (1997)



Int J Theor Phys (2008) 47: 814–831 831

15. Kreinovich, V., Longpré, L.: Nonstandard (non-σ -additive) probabilities in algebraic quantum field the-
ory. Int. J. Theor. Phys. 36(7), 1601–1615 (1997)

16. Kreinovich, V., Longpré, L.: Why Kolmogorov complexity in physical equations? Int. J. Theor. Phys.
37(11), 2791–2801 (1998)

17. Kreinovich, V., Moroz, B.Z.: Comments on the notion of state in non-relativistic quantum mechanics.
In: Abstracts of the Vth International Congress on Logic, Methodology, and Philosophy of Science,
pp. VII-41–VII-42. London, Ontario, Canada (1975)

18. Kreinovich, V., Vazquez, A., Kosheleva, O.M.: Prediction problem in quantum mechanics is intractable
(NP-hard). Int. J. Theor. Phys. 30(2), 113–122 (1991)

19. Li, M., Vitanyi, P.: An Introduction of Kolmogorov Complexity and Its Applications. Springer, New
York (1993)

20. Li, M., Vitanyi, P.: An Introduction of Kolmogorov Complexity and Its Applications. Springer, New
York (1997)

21. Longpré, L., Kreinovich, V.: Quantum cosmology: when are two wave functions distinguishable? In:
Complexity Conference Abstracts 1996, June, Abstract No. 96–19, p. 21 (1996)

22. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)
23. Moroz, B.Z.: States in quantum mechanics and a problem in the theory of operators. Zap. LOMI 39, 189

(1974)
24. Moroz, B.Z.: Reflections on quantum logics. Int. J. Theor. Phys. 22, 329–339 (1983)
25. Moroz, B.Z.: Reflections on quantum logics. Int. J. Theor. Phys. 23, 497 (1984)
26. Moroz, B.Z., Perelomov, A.M.: On a question posed by Pauli. Theor. Math. Phys. 101(1), 1200–1204

(1994)
27. Nilulin, M.S.: Hellinger distance. In: Hazewinkel, M. (ed.) Encyclopaedia of Mathematics. Springer,

Berlin (2001) ISBN 1-4020-0609-8
28. Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Handbuch der Physik, vol. 5. Springer,

Berlin (1958)
29. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys.

Dokl. 12, 1040–1041 (1968)
30. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Prince-

ton (1955)
31. Vovk, V.G.: On a randomness criterion. Sov. Math. Dokl. 35, 656–660 (1987)
32. Wiesbrock, H.-W.: Born’s postulate and reconstruction of the ψ -function in nonrelativistic quantum

mechanics. Int. J. Theor. Phys. 26(12), 1175–1184 (1987)
33. Zolotarev, V.M.: Probability metrics. Theory Probab. Appl. 28, 278–302 (1983)


	When Are Two Wave Functions Distinguishable: A New Answer to Pauli's Question, with Potential Application to Quantum Cosmology
	Abstract
	Standard Quantum Description: Brief Reminder
	Intended Audience and a Need for Reminders
	Classical (Pre-Quantum) Description
	Quantum Description is Probabilistic
	Case of a Single Particle
	Linear Structure on the Set of Wave Functions
	Bilinear Product on the Set of All Quantum States
	Case of Multi-Particle Systems
	Towards a General Case
	General Case: A Hilbert Space Description
	Measurements: A General Description

	Pauli's Question: What Is Known and What Is still Open
	Pauli's Original Question: How Uniquely Can We Determine the Quantum State Based on the Measurements?
	First Clarification: We Need a Generator Generating Systems in the Same State
	Second Clarification: We Need a Projective Hilbert Space
	Pauli's Question: What Is Known
	Pauli's Question: Open Problems Related to Practical Implementation
	Pauli's Question: A Remaining Fundamental Problem
	Simple Observation: We Cannot Uniquely Determine the Sequence of States
	What Would Be a Good Answer to This Question
	This Question Has Potential Applications to Quantum Cosmology
	Applications to Quantum Cosmology: Continued

	Auxiliary Reminder: Closeness in the Projective Hilbert Space
	To Describe How Accurately We Can Reconstruct Individual States, We Need a Metric on the Set of All States
	In Hilbert Space, There Is a Natural Metric but It Is not Sufficient
	Natural Idea
	Derivation of the Corresponding Formula
	Resulting Formula

	Kolmogorov Randomness as a Way to Formalize Distinguishability
	Need for an Algorithmic Notion of Randomness
	Kolmogorov-Martin-Löf Randomness: Motivations
	Kolmogorov-Martin-Löf Randomness: Resulting Definition
	Kolmogorov-Martin-Löf Randomness Have Been Used in Quantum Physics
	Our New Application Is Different from the Previous Ones

	Definitions and the Main Results
	Discussion

	Auxiliary Results and an Open Problem
	First Auxiliary Result: Weak Distinguishability
	Second Auxiliary Result: Going Back to the Case When We Have a Sequence of Identical States
	Remaining Open Problem: Going Beyond Kolmogorov-Martin-Löf Definition of Randomness

	Conclusions
	Acknowledgements
	Appendix Proofs
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


